

Operating Systems

- HVAC
 - Heating
 - Cooling
 Ventilation
- Water & Sewer
- Electrical
- Safety
- Indoor Air Quality
- Convenience

Operating Systems

- Rules for operating systems
 - □ Consider house as 1 large operating system, determine effect of each operating system has on each other.
 - \Box Use high efficiency components & subsystems designed to operate properly in a new, tight house.

Heating systems - Types

- Forced Air Furnace
- Pumped Hot Water
- Electric Resistance
- Heat Pump
- Wood Burning Stove
- Unit Heaters
- Corn Burning Stove

Heating systems – Forced Air Furnace

• Draws in cool air into heat exchanger. Heats air then distributes throughout house by ducts.

Heating systems – Forced Air Furnace

- Fueled by
 - Natural gas
 - Propane
 - □ Fuel oil
 - \Box Wood
 - □ Coal
 - Electric resistance elements

Heating systems – Forced Air Furnace

- All fuels cause combustion gases except electric resistance element.
- Vent combustible gases out by
 Chimney
 Vent system

Heating systems – air losses

- Lost air needs to be replaced with outside air via furnace.
- Backdrafting could occur

Heating systems - Sizing furnace

Undersized
 Reduce efficiency of air distribution
 Accelerate wear on components

Heating systems - air losses

- Safety devices to eliminate backdraft
 Sealed combustion chamber
 - $\square \operatorname{\mathsf{Powered}}$ exhaust flow
 - □ Sealed combustion air and combustion exhaust flow pipe
 - □ Safety controls

Heating systems – Heat loss • $Q = \frac{A^* \Delta T}{R}$ Q = heat loss BTU/hr A = area thru heat loss, ft² ΔT = change in temperature, °F R = Heat loss factor, ft²*hr*°F/BTU

Heating systems – Heat loss calculate areas Walls Windows 12^{1*8}^{1*2} walls = 192 ft^2 2^{1*4}^{1*8} windows = 64 ft^2 14^{1*8}^{1*2} walls = 224 ft^2 416 ft^2 -64 ft^2 352 ft^2

Heating systems – Heat loss

calculate change in temperature $\Delta T = 70^{\circ} - 10^{\circ}$ $= 60^{\circ} F$

Heating systems – Heat loss

calculate heat loss Q= <u>A*AT</u> R Walls Q= <u>352 ft^{2*} 60°F</u> 18.73 ft^{2*}hr*oF/BTU Q=1127.6 BTU/hr Q_{TOTAL}= 1127.6 + 2272.2 Q_{TOTAL}= 3399.8 BTU/hr

Windows Q= <u>64 ft^{2*} 60°F</u> 1.69 ft^{2*}hr*°F/BTU Q=2272.2 BTU/hr

Heating systems – Pumped Hot Water

- Hydronic system
- Heat produced in boiler and transported thru house by hot water.
- Still produces combustable gases
- Uses water jacket instead of heat exchanger
- No ductwork, water transported to radiators
- Radiators usually placed under windows

Heating systems – Pumped Hot Water

Radiant floor heating systems
 Pump hot water thru plastic piping embedded in floor.
 Heat radiates thru pipes and floor into room.

Heating systems – Electric Resistance

- Simplest & inexpensive to install
- Room to room temperature control
- No combustible gases
- Nearly 100% efficient
- Costly if electricity is expensive

Heating systems – Electric Resistance

- Baseboard units
- Individual, fan-assisted space heaters
- Furnace with a resistance element as the heat source
- Gypsum ceiling panels that contain resistance elements
- Resistance elements installed in floor systems

Heating systems – Electric Resistance

- Controlled with a thermostat
- Floor or wall mounted
- With or without fans
- Requires 200 Amp service

Heating systems – Heat Pumps

- Air to air heat pump
- Geothermal heat pump

Heating systems – Heat Pumps

- Air to air uses heat captured from the outdoor air to both heat and cool house
- Geothermal uses the earth's warmth to heat and cool house
- Uses electricity to transfer heat between outdoor and indoor coils.

Heating systems – Heat Pumps

- Not economical when weather gets cold
- May need back up system in very cold weather
- Since air temperature is lower than fuel system, more air needs to be moved thru ductwork
- No combustible gases produced

Heating systems – Heat Pumps

- Geothermal heat pump
- Uses earth's warmth to heat in winter and cool in summer
- Closed loop system placed under frost line
- Antifreeze solution runs in loop to extract heat or cool

Heating systems – Heat Pumps

- Economical to run
- High initial or set up cost
- May need backup electrical to operate system

Heating systems – Wood Burning Stoves/Unit Heaters

- Used as backup or decorative elements
- Firewood
- Messy
- Damp wood may cause moisture and insect problems
- Old not efficient, newer much better

Heating systems – Wood Burning Stoves/Unit Heaters

- Unit heaters used to heat specific areas
- Gas fired systems need to be vented outdoors

Heating systems – Comparing heating systems

- Operating costs are affected by
 Heating system efficiency
 Climate
 - □ House size
 - □ House structure efficiency
- Annual Fuel Utilization Efficiency (AFUE)

Heating systems – Comparing heating systems

- Minimum acceptable AFUE is 78%
- Higher efficiency furnaces may cost more

Heating systems – Fuel Cost Comparison

- Compare heating systems with different fuels
- Quantity for 1 mil BTUs * fuel price/annual efficiency
- Table 15-1

Heating systems – Fuel Cost Comparison

- Propane furnace with a cost of \$1.25/gal and 80% efficiency
- <u>11.11 gal *\$1.25/gal</u> = \$17.36/million BTU's 0.80

Cooling systems - Types

- Central cooling systems
- Unitary cooling systems
- Whole-house fan

Cooling systems - Central cooling systems

- Most common
- Uses the same blower & ductwork as furnace

Cooling systems - Unitary cooling systems

- Used for a room or section of house
- No ductwork
- Window unit

Cooling systems – Whole-house fan

- Used to bring cool air into house thru windows
- Used in late evening or early morning
- Fan located in attic or roof
- Pushes hot air out of house
- Only cools house to outside temperature and does not dehumidfy

Cooling systems – Efficiency Rating

- BTU of heat removed per hour
- Central air conditioner (SEER) Seasonal Energy Efficiency Rating
 No less than 12.0
- Unitary air conditioner (EER) Energy Efficiency Ratio
 No less than 9.0 in mild climate
 - $\square\,\text{No}\,\text{less}$ than 10.0 in hot climate

Cooling systems – Efficiency Rating

- Sizing air conditioner depends on
 - \Box Square footage of house
 - □ Shading of house
 - Insulation
 - □ Air leakage
 - \Box Heated generated in house

Ventilation Systems

- Used to remove
 - □ Moisture
 - □ Odors
 - Pollutants
 - \Box Combustible gases

Ventilation Systems - Types Natural ventilation Good for warmer, dry climates Mechanical ventilation More reliable Over ventilate – cause drafts Under ventilate – cause moisture build up

Ventilation Systems –Exhaust only fan

- Used to exhaust air out of house
 Bathroom fans
 Oven/range hoods
- 100 cfm for kitchen
- 50 cfm for bathroom

Ventilation Systems –Heat Recovery Ventilator (HRV)

- Transfer heat between intake and exhaust depending on climate
- 2 fans used
- More efficient than exhaust only
- Higher initial cost

Ventilation Systems – Ceiling Fans

- Popular for comfort & decorative
- Moves air in room
- Moves warm air down from ceiling

Ventilation Systems – Attic

- Proper ventilation is required to control moisture
- Attic ventilation requirements
 - □ With vapor retarder on the ceiling
 - 0.5 ft² of inlet & outlet area per 300 ft² of floor area
 - □ Without vapor retarder or vent exhaust no more than 3ft above eave vent
 - 0.5 ft² of inlet & outlet area per 150 ft² of floor area

Ventilation Systems – Attic

- Mechanical ventilation can be used w/ thermostat or humidastat
- Needs to be properly sized to avoid suction

